Cost Behavior - Analysis and Use

Mixed Costs: Contains both variable and fixed cost elements.

$$
Y=a+b x
$$

Y = Total Mixed Costs, Dependent Variable
$\mathrm{A}=$ Total Fixed Costs
$B=$ Variable Costs per unit
X = Level of Activity, Independent Variable
*This equation allows you to calculate what the total mixed costs would be for any level of activity within the relevant range
*This is the same as the slope formula learned in algebra $Y=m x+b$, and the point-slope formula $y-y_{1}=m\left(x-x_{1}\right)$

High-Low Method: A method of separating a mixed cost into its fixed and variable elements by analyzing the change in cost between the high and low activity levels

$$
\text { Variable Cost }=\underset{\text { Change in Activity }}{\text { Change In Cost }}=\text { Slope of the Line }=b
$$

$$
\mathrm{B}=\frac{\mathrm{Y}_{2}-\mathrm{Y}_{1}}{\mathrm{X}_{2}-\mathrm{X}_{1}}
$$

*Then use B, and two points (either $X_{2} \& Y_{2} O R X_{1} \& Y_{1}$) to solve for Total Fixed costs.

$$
Y=a+b x
$$

$$
A=y-b x
$$

Fixed cost element $=$ Total Cost minus Variable Cost Element
*Then create equation for your data. Example y = \#x + \#
Contribution Margin: The amount remaining from sales revenues after variable expenses have been deducted

Sales	xx
Less: Variable Costs	(xx)
$=$ Contribution Margin	xx
Less: Fixed Costs	$\frac{(\mathrm{xx})}{\mathrm{xx}}$
$=$ Net Income	xx

